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Abstract In this paper we carry out an information-theoretic analysis of the D-
dimensional rigid rotator by studying the entropy and complexity measures of its
wavefunctions, which are controlled by the hyperspherical harmonics. These mea-
sures quantify single and two-fold facets of the rich intrinsic structure of the system
which are manifest by the intricate and complex variety of D-dimensional geometries
of the hyperspherical harmonics. We calculate the explicit expressions of the entropic
moments and the Rényi entropies as well as the Fisher–Rényi, Fisher–Shannon and
LMC complexities of the system. The explicit expression for the last two complexity
measures is not yet possible, mainly because the logarithmic functional of the Shannon
entropy has not yet been obtained up until now in a closed form.
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1 Introduction

The manifestations of quantum mechanics in D-dimensional physical systems are
generally analytically inaccessible, basically because the associated Schrödinger equa-
tions cannot be explicitly solved except for a very few cases which correspond to a
quantum potential with some known symmetry. The particle-in-a-box, the harmonic
oscillator, the hydrogen atom, the particle moving in a Dirac-delta-like potential, and
the rigid rotator are possibly the five major prototypical systems which are used to
model the quantum-mechanical behavior of most 3- and D-dimensional physical sys-
tems (see e.g. [1,2]).

The information-theoretic properties of these physical prototypes have been
recently investigated for the first four cases in references [3–7]; see also the review
papers [8,9]. However, the corresponding properties for the rigid rotator have not yet
been found, although many other properties of this system are well known, such as
the specific heat [10], potential energy surfaces [11], spectral quantities in external
fields [12], among others. This is a serious lack because of the numerous applications
of this model; in particular, it has been extensively used to characterize the rotation
of diatomic molecules (and is easily extended to linear polyatomic molecules). In this
work we investigate the entropy and complexity properties of the wavefunctions of
the rigid rotator; i.e., the hyperspherical harmonics.

The D-dimensional (D ≥ 3) spherical harmonics (or simply, hyperspherical har-
monics) do not only play a central role in harmonic analysis and approximation theory
[13–15] but also in quantum theory [16,17]. As well, they have been shown to be the
solutions of a very broad class of equations of a form into which numerous equations of
D-dimensional physics can be transformed, ranging from the Schrödinger equation of
the rigid rotator till the Bethe-Salpeter equation of some quark systems [2,14,16–22].
Indeed, e.g. they are the eigenfunctions of the D-dimensional rigid rotator (i.e., a point
mass μ rotating around a fixed center in the hyperspace at a given distance r0) corre-
sponding to the eigenvalues l(l + D − 2)/(2I ), for l = 0, 1, 2, . . ., where the moment
of inertia I = μr2

0 . Moreover, they are the functions that give the anisotropic character
of the eigenfunctions of D-dimensional central potentials, since the remaining radial
part is spherically symmetric. The hyperspherical harmonics are functions defined on
the (D −1)-dimensional unit sphere SD−1 ⊂ RD which arise as eigenfunctions of the
Laplace–Beltrami operator corresponding to the eigenvalues l(l + D − 2). They are
basis vectors in certain irreducible representation spaces of SO(D, 2) [13–15], and in
fact constitute a basis for integrable functions defined on the unit sphere.

The hyperspherical harmonics are known [4,16,21] to have the form

Yl,{μ}(�D) = 1√
2π

eiμD−1θD−1

D−2∏

j=1

Ĉ
α j +μ j+1
μ j −μ j+1

(cos θ j )(sin θ j )
μ j+1 , (1)

where �D ≡ (θ1, θ2, . . . , θD−1) represents the D−1 angular coordinates of the sphere
SD−1 so that 0 ≤ θ j ≤ π for j = 1, . . . , D−2 and 0 ≤ θD−1 ≤ 2π . The D−1 integer
numbers l ≡ μ1 and {μ2, . . . , μD−1 ≡ m} ≡ {μ} have the values l = 0, 1, 2, . . . and
μ1 ≥ μ2 ≥ · · · ≥ |μD−1| ≥ 0. The parameter α j = (D − j − 1)/2. And the symbol
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Ĉλ
n (x), λ > − 1

2 , denotes the orthonormal Gegenbauer polynomial of degree n and
parameter λ which satisfies the orthogonality condition

∫ +1

−1
Ĉλ

n (x)Ĉλ
m(x)ωλ(x)dx = δmn, (2)

where the weight function is defined as

ωλ(x) = (1 − x2)λ− 1
2 . (3)

The algebraic properties of these functions are widely known in mathematical
physics [2,16,17,20–24]; in particular, they satisfy the orthogonality relation

∫

SD−1

Y ∗
l,{μ}(�D)Yl ′,{μ′}(�D)d�D = δll ′δ{μ},{μ′},

where the generalized solid angle element is

d�D =
⎛

⎝
D−2∏

j=1

(sin θ j )
2α j dθ j

⎞

⎠ dθD−1.

The spread of the hyperspherical harmonics all over the hyperspace is, however, not so
well known. This is a serious lack since these functions control the angular distribution
of the charge and momentum distributions of numerous quantum mechanical systems
with a central potential, by means of the density function

ρl,{μ}(�D) = ∣∣Yl,{μ} (�D)
∣∣2

, (4)

which is called as Rakhmanov probability density of the hyperspherical harmonics in
the theory of special functions, and gives the distribution of the particle all over the
hyperspace. The information-theoretic measures of this density function allows us to
quantify single and composite facets of the rich variety of D-dimensional geometries
of the system in the hyperspace.

The goal of this paper is three-fold. First, we calculate the analytical expressions
of various single information-theoretic measures of spreading (entropic moments and
Rényi entropies) beyond the recently found Fisher information [25], and the follow-
ing two-component complexity measures: Fisher–Shannon, Fisher–Rényi and LMC
complexities. Second, we apply these results to eigenfunctions of the standard (i.e.,
three-dimensional) rigid rotator; that is to the hyperspherical harmonics. Third, we
carry out a numerical study of these entropy and complexity quantities for various
orders and dimensionalities of the harmonics.

The structure of the paper is the following. In Sect. 2 we give the definitions of
the entropies and complexities to be used throughout the paper. Then, in Sect. 3 we
give the expression of the Fisher information and calculate the entropic moments
and Rényi entropies of the wavefunctions of the quantum-mechanical D-dimensional
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rigid rotator, which are controlled by the hyperspherical harmonics. In Sect. 4 the
expressions of the two-component complexity measures of the type Fisher–Shannon,
Fisher–Rényi and LMC types are given, and a numerical study is performed. Finally,
some conclusions are given and various open problems are pointed out.

2 Entropy and complexity measures: basics

In this section we describe briefly the information-theoretic spreading measures of a
general probability density ρ(	r) which will be used throughout the paper; namely, the
entropic moments, the Rényi, Tsallis and Shannon entropies, the Fisher information
and the associated two-component complexity measures: Fisher–Shannon, Fisher–
Rényi, and LMC.

The qth-frequency or entropic moment of the density ρ(	r), 	r ∈ R
D , is defined by

Wq [ρ] := 〈ρq−1〉 =
∫

RD

[
ρ(	r)]q

d	r, q ∈ R
+ (5)

where the expectation value of a function f (	r), 〈 f (	r)〉, is given by

〈 f (	r)〉 =
∫

RD
f (	r)ρ(	r)d	r.

Mathematically, these moments are often more useful than the ordinary moments 〈rk〉
because the later ones give too much weight to the tail of the distribution and, at times,
they are undefined [26]. From a physical point of view the entropic moments describe
numerous functionals of the electron density which characterize fundamental and/or
experimentally-measurable quantities of atomic and molecular systems according to
the Hohenberg–Kohn density-functional theory [27–30]; e.g. the Thomas-Fermi and
Dirac exchange energies. See also [31] for their connection with other atomic density
functionals, [32,33] for the existence conditions, [34] for further mathematical prop-
erties, [8] for various applications in D-dimensional quantum systems, and [35] for
potential applications in statistics and imaging.

The Rényi and Tsallis entropies of ρ(	r) are defined in terms of the entropic moments
as [36]

Rq [ρ] = 1

1 − q
log Wq [ρ] = 1

1 − q
log

∫

RD

[
ρ(	r)]q

d	r, q > 0, q 
= 1, (6)

and [37]

Tq [ρ] = 1

q − 1

(
1 − Wq [ρ]) = 1

q − 1

(
1 −

∫

RD

[
ρ(	r)]q

d	r
)

, q > 0, q 
= 1,

(7)
respectively, which when q → 1 reduce to the well-known Shannon entropy

S[ρ] = −
∫

RD
ρ(	r) log ρ(	r)d	r. (8)
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It is interesting to remark that these quantities are global measures of spreading of
the density ρ(	r) because they are power (Rényi) or logarithmic (Shannon) functionals
of ρ(	r). They provide various complementary ways to quantify the extent of ρ(	r) all
over the hyperspace.

The (translationally invariant) Fisher information of ρ(	r) is defined [38,39] by

F[ρ] =
∫

RD

ρ(	r) |∇D log ρ(	r)|2 d	r = 4
∫

RD

∣∣∣∇D

√
ρ(	r)

∣∣∣
2

d	r, (9)

where ∇D denotes the D-dimensional gradient. This notion was first introduced in
the one-dimensional case for statistical estimation [38], but nowadays it is used in
a wide variety of scientific fields [39] mainly because of its close resemblance with
kinetic and Weiszäcker energies [40]. Contrary to the Rényi and Shannon entropies,
the Fisher information is a local measure of spreading of the density because it is
a gradient functional of ρ(	r). The higher this quantity is, the more localized is the
density, the smaller is the uncertainty and the higher is the accuracy in estimating the
localization of the particle.

Recently, some composite density-dependent information-theoretic quantities have
been introduced. They are called complexity measures because they grasp more than a
single facet (macroscopic property) of the density. We refer to the Fisher–Shannon, and
the more general Fisher–Rényi, and the LMC shape complexities. They have a num-
ber of very interesting mathematical properties. Here we would like to highlight some
common characteristics. They are dimensionless, opposite to the previously defined
single-component entropies (entropic moments, Shannon and Rényi entropies, Fisher
information), what allows them to be mutually compared. They are defined essentially
by the product of two single entropies, what allows them to quantify two-fold facets
of the density. Moreover, they are intrinsic quantities of the density what differen-
tiate them from other complexity notions already used (computational complexity,
algorithmic complexity, ...), which depend on the context. Finally, they are close to
the intuitive notion of complexity because they are minimum for the extreme or least
complex distribution which correspond to maximum disorder (i.e., the highly flat dis-
tribution).

The Fisher–Rényi complexity of ρ(	r) is defined [41] by

C (q)
F R [ρ] := F [ρ] × Jq [ρ] (10)

where F [ρ] is the Fisher information (9) and Jq [ρ] denotes the qth-order Rényi power
entropy of ρ(	r) given by

Jq [ρ] = 1

2πe
e

2
D Rq [ρ] (11)

where Rq [ρ] is the Rényi entropy (6). This complexity measure quantifies wiggliness
or gradient content of the density jointly with its total extent all over the hyperspace,
the parameter q weighting different regions of ρ(	r). The special case q → 1 of (10)
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leads to the Fisher–Shannon complexity as

CF S [ρ] = F [ρ] × 1

2πe
e

2
D S[ρ], (12)

where S [ρ] is the Shannon entropy (8). All the relevant invariance properties (replica-
tion, translation, scaling) of CF S [ρ] are also fulfilled by the Fisher–Rényi complexities
C (q)

F R [ρ] for any q > 0, q 
= 1.
The LMC complexity of ρ(	r) is given [42,43] by

CL MC [ρ] = D [ρ] × eS[ρ], (13)

where
D [ρ] = W2 [ρ] = 〈ρ〉 (14)

is the second-order entropic moment of ρ, also called disequilibrium in some contexts.
This complexity measure quantifies the combined balance of the average height of ρ(	r)

and the total extent of the spread of the density over the whole hyperspace.

3 Entropy measures of hyperspherical harmonics

In this section we give the algebraic expression of the Fisher information and obtain
those of the entropic moments and Rényi and Tsallis entropies of the hyperspher-
ical harmonics Yl,{μ}(�D), which are given by the corresponding quantities, F[ρ],
Wq [ρ] and Rq [ρ] respectively, of the associated Rakhmanov probability density
ρ = ρl,{μ}(�D). They will be expressed in terms of the hyperquantum numbers
(μ1 ≡ l, μ2, . . . , μD−1) ≡ (l, {μ}) and the dimensionality D.

First we realize from Eqs. (1) and (4) that the Rakhmanov density of the hyper-
spherical harmonics is

ρl,{μ}(�D) = 1

2π

D−2∏

j=1

[
Ĉ

α j +μ j+1
μ j −μ j+1

(cos θ j )
]2

(sin θ j )
2μ j+1 . (15)

Then, according to Eq. (9), the Fisher information of this density is [25,44]

F[ρl,{μ}] = 4L(L + 1) − 2|μD−1|(2L + 1) − (D − 1)(D − 3), (16)

where L = l + D−3
2 . In the three-dimensional case (D = 3) this yields

Fl,m[ρ] = 4l(l + 1) − 2|m|(2l + 1). (17)
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The entropic moments of this density are, according to Eq. (5),

Wq [ρl,{μ}] =
∫

SD−1

[
ρl,{μ}(�D)

]q
d�D (18)

= 1

(2π)q−1

D−2∏

j=1

∫ π

0

∣∣∣Ĉα j +μ j+1
μ j −μ j+1

(cos θ j )

∣∣∣
2q

(sin θ j )
2(qμ j+1+α j )dθ j

The change of variable θ j → x j = cos θ j allows us to write these quantities as
follows

Wq [ρl,{μ}] = 1

(2π)q−1

D−2∏

j=1

∫ +1

−1

∣∣∣Ĉα j +μ j+1
μ j −μ j+1

(x j )

∣∣∣
2q (

1 − x2
j

)qμ j+1+α j − 1
2

dx j (19)

= 1

(2π)q−1

D−2∏

j=1

∫ +1

−1

∣∣∣Ĉα j +μ j+1
μ j −μ j+1

(x j )

∣∣∣
2q

ωqμ j+1+α j (x j ) dx j (20)

where ωλ(x) is defined in (3).
For q ∈ N we can apply the linearization method for Jacobi polynomials by Sri-

vastava [45], particularized for Gegenbauer polynomials. This method yields the fol-
lowing linearization formula:

[
Ĉ

α j +μ j+1
μ j −μ j+1

(x j )
]2q =

2q(μ j −μ j+1)∑

i=0

β
(i)
j,q,D

d

(
qμ j+1+α j − 1

2 ,qμ j+1+α j − 1
2

)

i[
d

(
μ j+1+α j − 1

2 ,μ j+1+α j − 1
2

)

μ j −μ j+1

]2q Ĉ
α j +qμ j+1
i (x j )

which, together with the orthogonality relation of the Gegenbauer polynomials, allows
us to obtain the following expression for the entropic moments:

Wq [ρl,{μ}] = 1

(2π)q−1

D−2∏

j=1

β
(0)
j,q,D

[
d

(
qμ j+1+α j − 1

2 ,qμ j+1+α j − 1
2

)

0

]2

[
d

(
μ j+1+α j − 1

2 ,μ j+1+α j − 1
2

)

μ j −μ j+1

]2q , (21)

where

d(α,β)
n =

√
2α+β+1�(n + α + 1)�(n + β + 1)

n!(2n + α + β + 1)�(n + α + β + 1)
(22)
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is the normalization constant of the Jacobi polynomials P(α,β)
n (x) and

β
(0)
j,q,D = c

(
2q, μ j − μ j+1, α j + μ j+1 − 1

2
, α j + μ j+1

−1

2
, α j + qμ j+1 − 1

2
, α j + qμ j+1 − 1

2

)

with

c(r, n, α, β, γ, δ) =
(

n + α

n

)r

×F1:2;...;2
1:1;...;1

(
γ + 1 : −n, α + β + n + 1; . . . ; −n, α + β + n + 1

γ + δ + 2 : α + 1; . . . ; α + 1
; 1, . . . , 1

)

=
(

n + α

n

)r n∑

j1,..., jr =0

(γ + 1) j1+···+ jr

(γ + δ + 2) j1+···+ jr

× (−n) j1 (α + β + n + 1) j1 · · · (−n) jr (α + β + n + 1) jr

(α + 1) j1 · · · (α + 1) jr j1! · · · jr ! , (23)

where F1:2;...;2
1:1;...;1 is a Srivastava–Daoust function [45]. This expression generalizes to

any q the expression of the entropic moment with q = 4 already obtained in [25].
Let us now consider some examples: In the case D = 3 we obtain the expressions

Wq [ρ0,0] = 22−2qπ1−q

for l = m = 0,

Wq [ρ1,0] = 22−2q3qπ1−q

2q + 1

for l = 1, m = 0,

Wq [ρl,l ] = (2π)1−q 22ql+1 (�(ql + 1))2

(2ql + 1)�(2ql + 1)

(
(2l + 1)�(2l + 1)

22l+1 (�(l + 1))2

)q

for m = l, and

Wq [ρl,l−1] = (2π)1−ql2q �
(
q + 1

2

)
�

(
q(l − 1) + 3

2

)
√

π�
(
ql + 3

2

)

(
d(q(l−1),q(l−1)

0

)2

(
d(l−1,l−1

1

)2q

for m = l − 1.
For D = 2 the spherical harmonic reduces to Ym(θ) = 1√

2π
eimθ , m ∈ Z, so the

entropic moment of order q have the constant value

Wq [ρm] = (2π)1−q .
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For D = 4 we can obtain the values of the entropic moments

Wq [ρ0,0,0] = 21−qπ2−2q

for μ1 = μ2 = μ3 = 0,

Wq [ρ1,0,0] = 21+qπ
3
2 −2q�

( 1
2 + q

)

�(2 + q)

for μ1 = 1 and μ2 = μ3 = 0,

Wq [ρl,l,l ] = (2π2)1−q (l + 1)q

lq + 1

for μ1 = μ2 = μ3 = l,

Wq [ρl,l−1,l−1] = 2π
3
2 −2q(l(l + 1))q �

(
q + 1

2

)
� (q(l − 1) + 1)

�(lq + 2)

for μl and μ2 = μ3 = l − 1,

Wq [ρl−1,l−1,l−2] = 21+qπ1−2q(l(l2 + 1))q

(
�

(
q + 1

2

))2
� (q(l − 2) + 1)

�(lq + 2)

for μl , μ2 = l − 1 and μ3 = l − 2.
For any value of the dimensionality D we can obtain the following results:

Wq [ρ0,0,...,0] = (2π)1−q2(D−1)(D−2)(1−q)/2((D − 2)!)q−1
D−2∏

j=1

(
�

(
D− j

2

))2−2q

(� (D − j − 1))1−q

for μ1 = μ2 = · · · = μD−1 = 0,

Wq [ρl,l,...,l ] = (2π)1−q2(D−1)(D−2)(1−q)/2 ((2l + 1)D−2)
q

(2ql + 1)D−2

×
D−2∏

j=1

(
�

(
ql + D− j

2

))2

�(2ql + D − j − 1)

⎛

⎜⎝
�(2l + D − j − 1)
(
�

(
l + D− j

2

))2

⎞

⎟⎠

q

for μ1 = μ2 = · · · = μD−1 = l.
These expressions together with Eqs. (6) and (14) allow us to obtain the Rényi and

Tsallis entropies of the quantum-mechanical states of the D-dimensional rigid rota-
tor, respectively, in a straightforward manner in terms of the hyperquantum numbers
characterizing the states and the dimensionality D.
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4 Complexity measures of hyperspherical harmonics

In this section we consider the complexity measures of Fisher–Shannon, Fisher–Rényi
and LMC of the eigenfunctions of the D-dimensional rigid rotator (i.e., the hyperspher-
ical harmonics) which are described by the corresponding quantities of the associated
probability density given by Eq. (4) or (15). We should immediately say that these
quantities cannot be obtained in analytical form, mainly because of the highbrow
expression of the Rényi entropy (as seen in the previous section) and the logarith-
mic character of the Shannon functional. Therefore, our study has to be necessarily
numerical. We will fix the dimensionality D = 3, so that we will investigate the
behavior of the abovementioned complexity measures for the eigenfunctions of the
three-dimensional rigid rotator (i.e., the standard spherical harmonics Yl,m(θ, φ)) in
terms of the quantum numbers l and m. We will numerically perform a complexity
analysis of the three-dimensional rigid rotator (i.e., a point-mass particle freely mov-
ing on the two-dimensional sphere) whose ground and excited states (l, m) have the
associated probability density

ρl,m(θ, φ) = 1

2π

[
Ĉ

1
2 +m

l−m (cos θ)

]2

(sin θ)2m . (24)

It is well known that this system models a great number of physical systems, such
as e.g. the rotating diatomic molecules. Indeed, a diatomic molecule is an extremely
complicated many body problem (e.g., the HCl molecule is a 20-body problem), but
at very low energies no excitations associated with the electron degrees of freedom
come into play since the electron cloud binds the two atomic nuclei into a nearly rigid
structure. For further details and applications of the three-dimensional rigid rotator,
see e.g. [14,19,21].

4.1 Fisher–Shannon complexity

According Eq. (12), the Fisher–Shannon complexity of the three-dimensional rotator
state (l, m) is given by the Fisher–Shannon complexity of the density ρl,m(θ, φ); that
is,

CF S[ρl,m] = F[ρl,m] × 1

2πe
e

2
3 S[ρl,m ] = (4l(l + 1) − 2|m|(2l + 1)) × 1

2πe
e

2
3 S[ρl,m ],

where the Shannon entropy S[ρl,m ] is given by Eq. (8). The variation of this complexity
measure in terms of l and m is investigated in Figs. 1, 2 and 3. Figure 1 shows the values
of the Fisher–Shannon complexity for fixed values of the angular quantum number
l = 10, 20, 50, 80, for m from 0 to l. Notice that this complexity measure depends
on the absolute value of m, so we have that CF S[ρl,−m] = CF S[ρl,m]. In this case we
observe that the function CF S[ρl,m] decreases monotonically as m increases. We can
also remark that the values of the complexity measure grow when l increases.

Figure 2 shows specifically how the complexity measure grows with l (l ≥ m) for
fixed values of m.
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Fig. 1 Dependence of the Fisher–Shannon complexity on the magnetic quantum number m = 0, . . . , l,
for various spherical harmonics Yl,m (θ, φ) with a fixed orbital quantum number l = 10 (filled square), 20
(times symbol), 50 (square with dot) and 80 (circle with dot)
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Fig. 2 Growth of the Fisher–Shannon complexity with l for various spherical harmonics Yl,m (θ, φ) for
fixed m = 0 (filled square), 1 (times symbol), 2 (square with dot) and 5 (circle with dot)

Finally, Fig. 3 represents the values of CF S[ρl,m] as a function of l when m = l −a
with a = 0, 1, 2, for l from m to 80. The complexity measure increases monotonically
with l in all the cases, and we see that the larger the difference between l and m, the
higher the growth rate.

4.2 Fisher–Rényi complexity

Following Eqs. (6), (10), (11), (17) and (18) we can express the Fisher–Rényi complex-
ity C (q)

F R[ρl,m] of the three-dimensional rigid rotator in terms of the quantum numbers
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Fig. 3 Behaviour of the Fisher–Shannon complexity of the spherical harmonics Yl,m (θ, φ) with m = l −a,
where a = 0 (filled square), 1 (times symbol) and 2 (square with dot), as a function of l when l goes from a
to 80

l and m via the entropic moments Wq [ρl,m] already calculated in Sect. 3 for any
dimension; that is,

C (q)
F R[ρl,m] = 1

2πe
F[ρl,m] × Wq [ρl,m] 2

3(1−q)

= 1

2πe
(4l(l + 1) − 2|m|(2l + 1)) × Wq [ρl,m] 2

3(1−q) , with q > 0.

(25)

Let us now explore the dependence of this complexity for a given q (say e.g., q = 2)
on the quantum parameters l and m by means of Figs. 4, 5 and 6. Figure 4 represents
the Fisher–Rényi complexity measure C (q)

F R[ρl,m] for q = 2 as a function of m for
fixed values of l = 10, 20, 50. The most notable feature of this figure is the maximum
value achieved by this complexity measure for a given value m0 ≥ 0 that depends on
l and q. This contrasts with Fig. 1, where the maximum value of the Fisher–Shannon
complexity measure is achieved for m0 = 0 in all the cases.

Figure 5 shows the complexity C (q)
F R[ρl,m] for q = 2 as a function of l for m =

0, 1, 2, 5. We observe the same monotonically increasing behaviour shown by the
Fisher–Shannon complexity in Fig. 2.

Figure 6 represents the complexity C (q)
F R[ρl,m] for q = 2 as a function of l for

m = l −a, with a = 0, 1, 2. This figure is completely analogous to the corresponding
Fig. 3 for the Fisher–Shannon complexity, where the complexity measure increases
monotonically as l grows.

4.3 LMC complexity

According to Eqs. (8), (13) and (14) we have that the LMC complexity of the rotator
states (l, m) is given by the expression
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Fig. 4 Study of the Fisher–Rényi complexity measure C(2)
F R in terms of m for various spherical harmonics

Yl,m (θ, φ) with fixed values of l = 10 (filled square), 20 (times symbol) and 50 (circle with dot)
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Fig. 5 Study of the Fisher–Rényi complexity measure C(2)
F R in terms of l for various spherical harmonics

Yl,m (θ, φ) with fixed values of m = 0 (filled square), 1 (times symbol), 2 (square with dot) and 5 (circle
with dot)

CL MC [ρl,m] = W2[ρl,m] × eS[ρl,m ] (26)

where W2[ρl,m] have been already calculated in Sect. 3. Figure 7 shows the LMC
complexity measure as a function of m and fixed values l = 10, 20, 50, 80. This
complexity measure has a decreasing behaviour as m increases up to the position
m ∼ l where a minimum is found and the complexity measure starts increasing.

Figure 8 shows the LMC complexity CL MC [ρl,m] as a function of l for fixed values
m = 0, 1, 2, 5. For l � m this complexity have a clear increasing behaviour. But for

123



586 J Math Chem (2015) 53:573–589

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60

F
is

he
r-

R
én

yi

l

Fig. 6 Study of the Fisher–Rényi complexity measure C(2)
F R for various spherical harmonics Yl,m (θ, φ)

with m = l − a, where a = 0 (filled square), 1 (times symbol), and 2 (circle with dot), as a function of l
when l goes from a to 60
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Fig. 7 Dependence of the LMC complexity measure on m for various spherical harmonics Yl,m (θ, φ) with
fixed orbital quantum number l = 10 (filled square), 20 (times symbol), 50 (square with dot), and 80 (circle
with dot)

some cases it has a minimum when l ∼ m. These minima correspond to those found
on Fig. 7. They appear when the values of l and m have similar values.

This behaviour is better explained in Fig. 9, where CL MC [ρl,m] is represented as a
function of l for m = l − a, with a = 0, 1, 2. Thus, l ∼ m in all the cases. We observe
that for large and moderate values of l (l � 5) the complexity measure is larger when
m = l than in the other two cases.
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Fig. 8 Study of the LMC complexity measure as a function of l for various spherical harmonics Yl,m (θ, φ)

with fixed values of m = 0 (filled square), 1 (times symbol), 2 (square with dot), and 5 (circle with dot)
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Fig. 9 Behavior of the LMC complexity measure for various spherical harmonics Yl,m (θ, φ)with m = l−a,
where a = 0 (filled square), 1 (times symbol), and 2 (square with dot), as a function of l when l goes from
a to 60

5 Conclusions

The rigid rotator model has been used in numerous mathematical and physical direc-
tions [13–16]; in particular it has been used to characterize the rotation of diatomic
molecules (and is easily extended to linear polyatomic molecules), so that the entropy
and complexity properties of these molecules can be referenced with respect to the
corresponding rotator quantities [46]. In this work we have investigated the entropy
and complexity measures of the eigenfunctions of the D-dimensional rigid rotator
model (namely, the hyperspherical functions) in terms of the dimensionality and the
hyperquantum numbers which characterize them.
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Since the hyperspherical harmonics describe the angular part of the stationary states
of any central potential with arbitrary dimensionality, these information-theoretic
quantities provide estimations for the angular anisotropy of the eigenfunctions of a
central potential in the hyperspace. In other terms, they quantify the rich variety of D-
dimensional geometries of the lobe-structure of the quantum states of the correspond-
ing system (e.g., hydrogenic orbitals for the hydrogen atom), which are described by
means of D integer hypernumbers (e.g., the principal, orbital and azimuthal quantum
numbers n, l and m, in the three dimensional case).

Specifically, besides the explicit expression for the Fisher information, first we
have found the entropic or frequency moments of the hyperspherical harmonics, which
allows one to find the Rényi and Tsallis entropies of the rigid rotator in a straightforward
manner. Then, we numerically study the dependence on the quantum numbers (l, m)

for the complexity measures of Fisher–Shannon, Fisher–Rényi and LMC types of the
spherical harmonics Yl,m(θ, φ), which are the eigenfunctions of the three-dimensional
rigid rotator.

Let us highlight that the spatial complexity of the associated probability densities
(24) to the spherical harmonics is clearly related to the number of lobes of their three-
dimensional representations. In fact the degree of the involved Gegenbauer polynomial
is connected to its number of maxima, and hence to the number of lobes, that is equal
to l −|m|+1; so the complexity is expected to grow as the difference l −|m| increases.
This behaviour is only grasped by the Fisher–Shannon complexity. Indeed the Fisher–
Rényi and the LMC complexities, although follow this behaviour in most cases, show
pointwise differences with respect to the Fisher–Shannon complexity. This can be seen
e.g. in Fig. 1, where the Fisher–Rényi measure increases with |m| at low values of |m|.
Similarly, this counterintuitive behaviour can also be seen for the LMC complexity in
Figs. 7 and 8 for the cases where l � |m|. As well, this phenomena is also apparent in
Fig. 9 in a transparent manner, where |m| � l in all the cases and a clear monotonic
behaviour in the plotted data is not observed. In turn, it is remarkable that the Fisher–
Shannon complexity grasps the visual, intuitive complexity of the density associated
to the spherical harmonics. From this point of view we can endorse this quantity as
the most appropriate complexity measure in this system.

Finally, let us also point out that the entropy and complexity quantities used in
this work do not only quantify the anisotropic character of the stationary states of the
central potentials in any dimensionality, but they can potentially be used to visualize D-
dimensional models that are becoming integral components of data processing in many
fields, including medicine, chemistry, architecture, agriculture and biology over last
few years. Moreover, they could be employed to carry out volumetric shape analyses
which permit an evaluation of the actual structures that are implicitly represented in
D-dimensional image data.

Acknowledgments This work has been partially funded by the Junta-de-Andaluca Grants FQM-207,
FQM-7276 and FQM-4643, as well as the MICINN Grant FIS2011-24540

References

1. A. Galindo, P. Pascual, Quantum Mechanics (Springer, Berlin, 1990)

123



J Math Chem (2015) 53:573–589 589

2. D.R. Herschbach, J. Avery, O. Goscinski, Dimensional Scaling in Chemical Physics (Kluwer, Dor-
drecht, 1993)

3. P.A. Bouvrie, J.C. Angulo, J.S. Dehesa, Phys. A 390, 2215 (2011)
4. J.S. Dehesa, S. López-Rosa, A. Martínez-Finkelshtein, R.J. Yáñez, Int. J. Quantum Chem. 109, 1529

(2010)
5. J.S. Dehesa, W. Van Assche, R.J. Yáñez, Phys. Rev. A 50, 3065 (1994)
6. J.S. Dehesa, R.J. Yáñez, A.I. Aptekarev, V. Buyarov, J. Math. Phys. 39, 3050 (1998)
7. S. López-Rosa, J. Montero, P. Sánchez-Moreno, J. Venegas, J. Dehesa, J. Math. Chem. 49, 971 (2011)
8. J.S. Dehesa, S. López-Rosa, D. Manzano, Entropy and complexity analyses of D-dimensional quantum

systems, in Statistical Complexity: Applications in Electronic Structure, ed. by K.D. Sen (Springer,
Berlin, 2011)

9. J.S. Dehesa, A. Martínez-Finkelshtein, J. Sánchez-Ruiz, J. Comput. Appl. Math. 133, 23 (2001)
10. S. Curilef, C. Tsallis, Phys. A 215, 542 (1995)
11. C. Rist, A. Faure, J. Math. Chem. 50, 588 (2012)
12. M. Gartner, J.J. Omiste, P. Schmelcher, R. González-Férez, Mol. Phys. 111, 1865 (2013)
13. F. Dai, Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls (Springer, Berlin,

2013)
14. C. Müller, Analysis of Spherical Harmonics in Euclidean Space (Springer, Berlin, 1997)
15. K. Atkinson, W. Han, Lecture Notes in Mathematics, vol. 124 (Springer, Berlin, 2012)
16. J. Avery, Hyperspherical Harmonics: Applications in Quantum Theory (Kluwer, Dordrecht, 1989)
17. J. Avery, Hyperspherical Harmonics and Generalized Sturmians (Kluwer, Dordrecht, 2000)
18. E. Kyriakopoulos, Phys. Rev. 174, 1846 (1968)
19. E.M. Stein, G. Weiss, Fourier Analysis in Eucledian Spaces (Princeton University Press, Princeton,

1971)
20. V. Aquilanti, S. Cavalli, G. Grossi, J. Chem. Phys. 85, 1362 (1986)
21. A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable

(Springer, Berlin, 1991)
22. J. Avery, J. Phys. Chem. 97, 2406 (1993)
23. Z.Y. Wen, J. Avery, J. Math. Phys. 26, 396 (1985)
24. J. Avery, J. Math. Chem. 24, 169 (1998)
25. J.S. Dehesa, S. López-Rosa, R.J. Yáñez, J. Math. Phys. 48, 043503 (2007)
26. J. Uffink, Measures of Uncertainty and the Uncertainty Principle (PhD Thesis, University of Utrecht,

1990), see also references herein
27. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press,

Oxford, 1989)
28. S. Liu, R.G. Parr, Phys. Rev. A 53, 2211 (1996)
29. S. Liu, R.G. Parr, Phys. A 55, 1792 (1997)
30. A. Nagy, S. Liu, R.G. Parr, Phys. Rev. A 59, 3349 (1999)
31. J.C. Angulo, E. Romera, J.S. Dehesa, J. Math. Phys. 41, 7906 (2000)
32. M.B. Pintarelli, F. Vericat, Phys. A 324, 568 (2003)
33. E. Romera, J.C. Angulo, J.S. Dehesa, J. Math. Phys. 42, 2309 (2001)
34. N. Leonenko, L. Pronzato, V. Savani, Ann. Stat. 40, 2153 (2008)
35. H. Dette, V.B. Melas, A. Pepelyshev, Ann. Stat. 33, 2758 (2005)
36. A. Rényi, Probability Theory (Akademi Kiado, Budapest, 1970)
37. C. Tsallis, J. Stat. Phys. 52, 479 (1998)
38. R.A. Fisher, Proc. Camb. Philos. Soc. 22, 700 (1925)
39. B.R. Frieden, Science from Fisher Information (Cambridge University Press, Cambridge, 2004)
40. S.B. Sears, R.G. Parr, U. Dinur, Isr. J. Chem. 19, 165 (1980)
41. E. Romera, A. Nagy, Phys. Lett. A 372, 6823 (2008)
42. R.G. Catalan, J. Garay, R. López-Ruiz, Phys. Rev. E 66, 011102 (2002)
43. R.L. Ruíz, Biophys. Chem. 115, 215 (2005)
44. E. Romera, P. Sánchez-Moreno, J.S. Dehesa, J. Math. Phys. 47, 103504 (2006)
45. H.M. Srivastava, Astrophys. Space Sci. 150, 251 (1988)
46. R.O. Esquivel, J.C. Angulo, J. Antolín, J.S. Dehesa, S. López-Rosa, N. Flores-Gallegos, Phys. Chem.

Chem. Phys. 12, 7108 (2010)

123


	Entropy and complexity analysis of the D-dimensional rigid rotator and hyperspherical harmonics
	Abstract
	1 Introduction
	2 Entropy and complexity measures: basics
	3 Entropy measures of hyperspherical harmonics
	4 Complexity measures of hyperspherical harmonics
	4.1 Fisher--Shannon complexity
	4.2 Fisher--Rényi complexity
	4.3 LMC complexity

	5 Conclusions
	Acknowledgments
	References


